

S3D12065G 650V SIC POWER SCHOTTKY RECTIFIERS

D2PAK(TO-263-2)

Description

S3D12065G is SiC Schottky rectifiers packaged in D2PAK(TO-263-2) case. The devices are high voltage Schottky rectifiers that have very low total conduction losses and very stable switching characteristics over temperature extremes. The S3D12065G is ideal for energy sensitive, high frequency applications in challenging environments.

Circuit Diagram

Features

- 175°C TJ operation
- Ultra-low switching loss
- Switching speeds independent of operating temperature
- Low total conduction losses
- High forward surge current capability
- High package isolation voltage
- Terminals finish: 100% Pure Tin
- “-A” is an AEC-Q101 qualified device
- Pb - Free Device
- All SMC parts are traceable to the wafer lot
- Additional electrical and life testing can be performed upon request

Applications

- Alternative energy inverters
- Power Factor Correction (PFC)
- Free-Wheeling diodes
- Switching supply output rectification
- Reverse polarity protection

Maximum Ratings

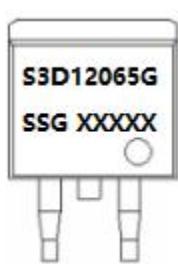
Characteristics	Symbol	Condition	Max.	Units
Peak Repetitive Reverse Voltage	V_{RRM}	-	650	V
Working Peak Reverse Voltage	V_{RWM}			
DC Blocking Voltage	V_{DC}			
Average Rectified Forward Current	$I_{F(AV)1}$	@ $T_c=25^\circ C$	48	A
	$I_{F(AV)2}$	@ $T_c=157^\circ C$	12	A
Repetitive Peak Forward Surge Current	I_{FRM1}	10ms, Half Sine pulse, $T_c=25^\circ C$	60	A
	I_{FRM2}	10ms, Half Sine pulse, $T_c=110^\circ C$	40	A
Peak One Cycle Non-Repetitive Surge Current	I_{FSM1}	10ms, Half Sine pulse, $T_c=25^\circ C$	140	A
	I_{FSM2}	10ms, Half Sine pulse, $T_c=110^\circ C$	96	A
Non-Repetitive Peak Forward Surge Current	$I_{F,Max1}$	10μs. Pulse, $T_c=25^\circ C$	1200	A
	$I_{F,Max2}$	10μs. Pulse, $T_c=110^\circ C$	100	A
Power Dissipation	P_{tot1}	$T_c=25^\circ C$	144	W
	P_{tot2}	$T_c=110^\circ C$	63	W

Electrical Characteristics:

Characteristics	Symbol	Condition	Typ.	Max.	Units
Forward Voltage Drop*	V _{F1}	@ 12A, Pulse, T _J = 25 °C	1.5	1.7	V
	V _{F2}	@ 12A, Pulse, T _J = 175 °C	1.75	2.2	V
Reverse Current*	I _{R1}	@V _R = rated V _R T _J = 25 °C	0.1	6	uA
	I _{R2}	@V _R = rated V _R T _J = 175 °C	1.5	50	uA
Junction Capacitance	C _T	V _R =0V, T _J =25°C, f=1MHz	764	-	pF
Reverse Recovery Charge	Q _c	I _F = 12A, di/dt = 200A/μs V _R = 400 V, T _J = 25°C	84.07	-	nC
Capacitance Stored Energy	EC	V _R = 400 V, T _J = 25°C	17.30	-	μJ

* Pulse width < 300 μs, duty cycle < 2%

Thermal-Mechanical Specifications:


Characteristics	Symbol	Condition	Specification	Units
Junction Temperature	T _J	-	-55 to +175	°C
Storage Temperature	T _{stg}	-	-55 to +175	°C
Typical Thermal Resistance Junction to Case	R _{θJC}	DC operation	1.01	°C/W

Ordering Information

Device	Package	Shipping
S3D12065G	D2PAK(TO-263-2)	800pcs /Reel
S3D12065GTR	D2PAK(TO-263-2)	800pcs /Reel

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specification.

Marking Diagram

Where XXXXX is YYWWL

S3D = Device Type
 G = Package type
 12 = Forward Current (12A)
 065 = Reverse Voltage (650V)
 SSG = SSG
 YY = Year
 WW = Week
 L = Lot Number

Cautions: Molding resin
Epoxy resin UL:94V-0

Ratings and Characteristics Curves

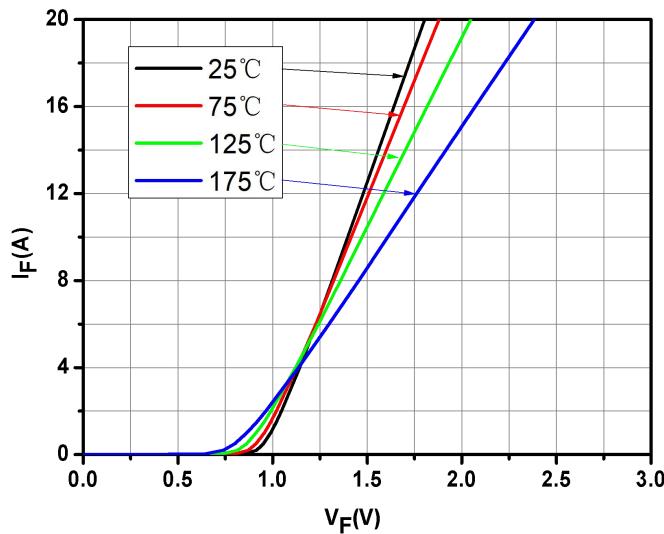


Fig.1-Typical Forward Voltage Characteristics

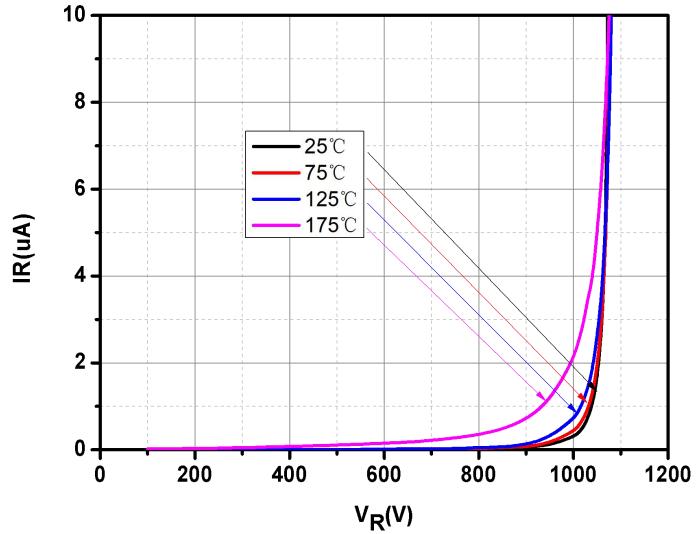


Fig.2-Typical Reverse Characteristics

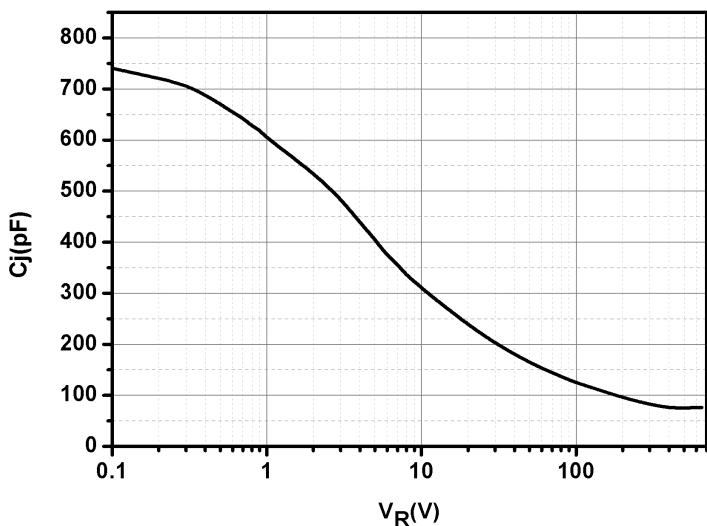


Fig.3-Capacitance vs. Reverse Voltage

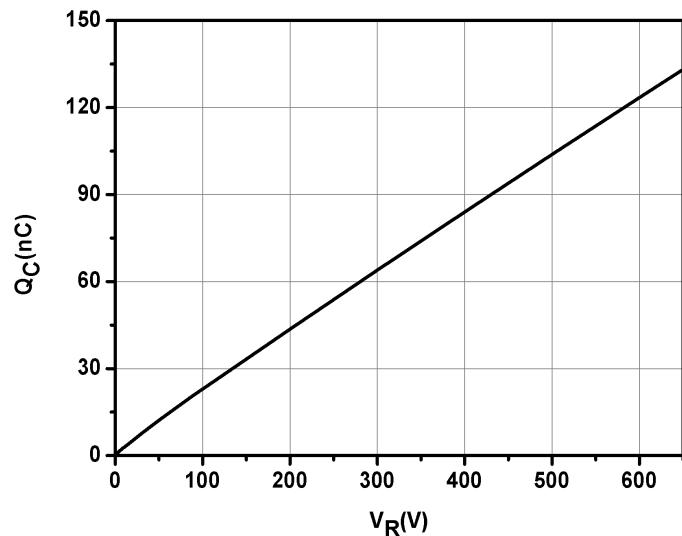


Fig.4-Total Capacitance Charge vs. Reverse Voltage

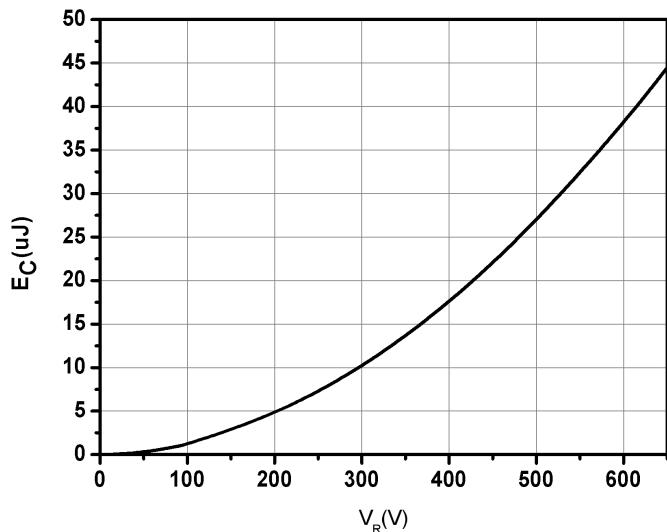


Fig.5-Capacitance Stored Energy

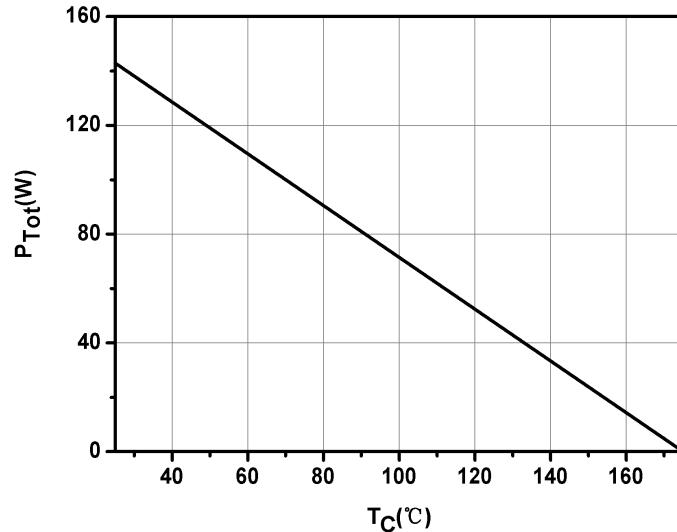
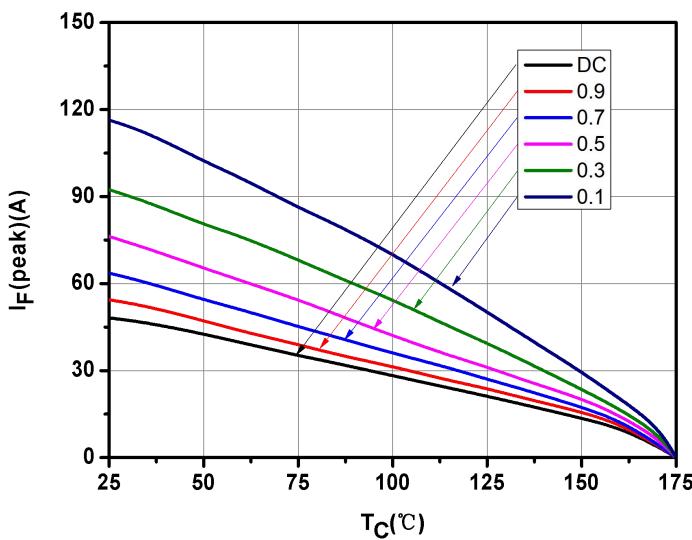
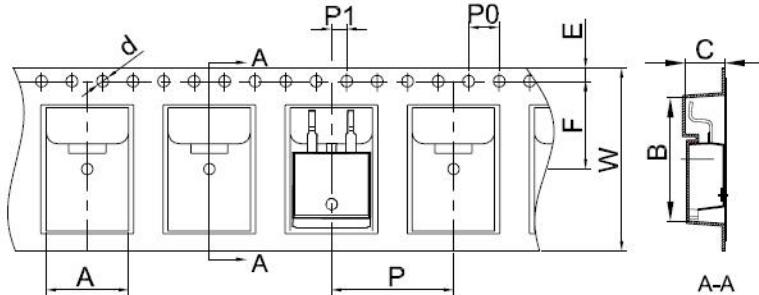
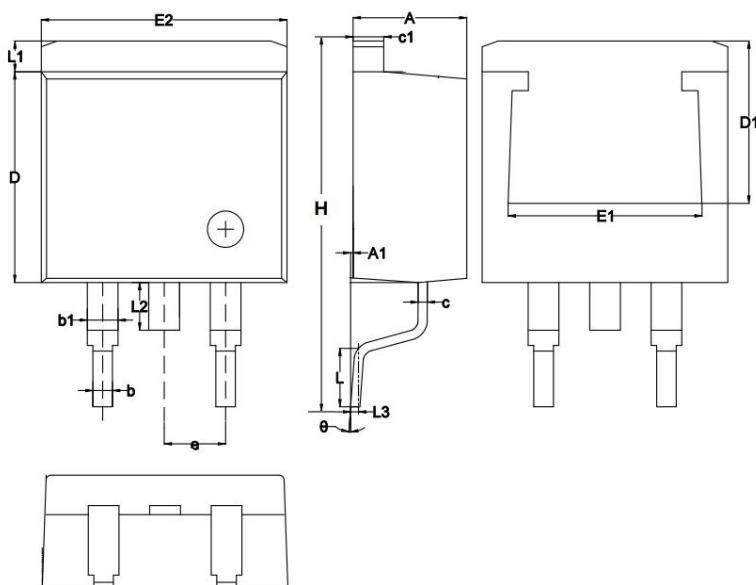


Fig.6-Power Derating


Fig.7-Current Derating

Carrier Tape & Reel Specification

SYMBOL	Millimeters	
	Min.	Max.
A	10.70	10.90
B	16.03	16.23
C	5.11	5.31
d	1.45	1.65
E	1.65	1.85
F	11.40	11.60
P0	3.90	4.10
P	15.90	16.10
P1	1.90	2.10
W	23.90	24.30

Mechanical Dimensions

Symbol	Dimensions in millimeters	
	Min.	Max.
A	4.06	4.83
A1	0	0.26
b	0.51	0.99
b1	1.14	1.78
c	0.31	0.74
c1	1.14	1.65
D	8.38	8.65
D1	6.40	
E1	6.22	
E2	9.65	10.67
e	2.54BSC	
H	14.60	15.88
L	1.78	2.80
L1	-	1.68
L2	-	2.2
L3	0.255BSC	
theta	0	8°

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the SMC Diode Solutions sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall SMC Diode Solutions be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). SMC Diode Solution assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall SMC Diode Solutions be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or SMC Diode Solutions.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of SMC Diode Solutions.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations..

Technical Data
Data Sheet N3097, REV.-

